References

12. References#

Adornado, H.A.; Yoshida, M. GIS-based watershed analysis and surface run-off estimation using curve number (CN) value. J. Environ. Hydrol. 2010, 18, 1–10.

Aleynikov A A, Popovnin V V, Voytkovskiy K F, Zolotaryov Y A. 2002. Indirect estimation of the Djankuat Glacier volume based on surface topography. Nordic Hydrology 33(1): 95-110.

Allen, R.G., Pereira, L.S., Raes, D., Smith, M. (1998). “Crop evapotranspiration – guidelines for computing crop water requirements – FAO Irrigation and Drainage Paper 56.” FAO, 1998. ISBN 92-5-104219-5.

Amengual,A., Carrió, D.S., Ravazzani, G., and Homar, V.. A comparison of ensemble strategies for flash flood forecasting: the 12 october 2007 case study in valencia, spain. Journal of Hydrometeorology, 18(4):1143–1166, 2017.

Arnold, J.G.; Moriasi, D.N.; Gassman, P.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 14, 533–538.

Assouline, S. (2013). Infiltration into soils: Conceptual approaches and solutions. Water Resources Research, 49, 1755– 1772. https://doi.org/10.1002/wrcr.20155

Avanzi, F., Ercolani, G., Gabellani, S., Cremonese, E., Pogliotti, P., Filippa, G., Morra di Cella, U., Ratto, S., Stevenin, H., Cauduro, M., and Juglair, S.: Learning about precipitation lapse rates from snow course data improves water balance modeling, Hydrol. Earth Syst. Sci., 25, 2109–2131, https://doi.org/10.5194/hess-25-2109-2021, 2021.

Barry RG, Chorley RJ (1987) Atmosphere, weather and climate, 5th edn. Routledge, London.

Barry, D.A., Parlange, J.-Y., and Li, L, 2000. Approximation for the exponential integral (Theis well function). Journal of Hydrology, 227, 287-591.

Bates, P.D., and De Roo, A.P.J., 2000. A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236, 54-77.

Beasley, D.B.; Huggins, L.F.; Monke, E.J. ANSWERS: A model for watershed planning. Trans. ASAE 1980, 23, 938–944.

Boscarello, L., Ravazzani, G., Rabuffetti, D., & Mancini, M.. (2014). Integrating glaciers raster-based modelling in large catchments hydrological balance: the Rhone case study. Hydrological processes, 28, 496–508.

Brooks, R.H., and Corey A.T., Properties of porous media affecting fluid flow, J. Irrig. Drainage Div. A.S.C.E. IR2; 61-88, 1966.

Brutsaert, W. (2005). Hydrology: An introduction (pp. 305– 365). Cambridge, New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511808470

Carnahan, B., Luther, H. A., and Wilkes, J. O. (1969). Applied Numerical Methods. John Wiley & Sons: New York; 604.

Ceppi, A., Gambini, E., Lombardi, G., Ravazzani, G., & Mancini, M.. (2022). Sol40: forty years of simulations under climate and land use change. Water, 14(6).

Ceppi, A., Ravazzani, G., Corbari, C., Salerno, R., Meucci, S., & Mancini, M.. (2014). Real-time drought forecasting system for irrigation management. Hydrology and earth system sciences, 18(9), 3353–3366.

Chen J, Ohmura A. 1990. Estimation of Alpine glacier water resources and their change since the 1870s. Hydrology in Mountain Regions. I – Hydrological Measurement; the Water Cycle. Proceedings of two Lausanne Symposia. IAHS Publ. 193: 127-135.

Cheng, F.-Y., Georgakakos, K.P. (2011), Wind speed interpolation in the vicinity of the Panama Canal, Meteorol. Appl., 18, 459–466.

Chow, V. T., Maidment, D. R., and Mays, L. W. (1988). Applied Hydrology. McGraw-Hill, New York.

Collis-George, N. Infiltration equations for simple soil systems. Water Resour. Res. 1977, 13, 395–403.

Corbari, C., & Mancini, M. (2014). Calibration and validation of a distributed energy–water balance model using satellite data of land surface temperature and ground discharge measurements. Journal of hydrometeorology, 15(1), 376-392.

Corbari, C., Ravazzani, G., & Mancini, M. (2011). A distributed thermodynamic model for energy and mass balance computation: FEST–EWB. Hydrological Processes, 25(9), 1443-1452.

Corbari, C., Ravazzani, G., Perotto, A., Lanzingher, G., Lombardi, G., Quadrio, M., Mancini, M., & Salerno, R.. (2022). Weekly monitoring and forecasting of hydropower production coupling meteo-hydrological modeling with ground and satellite data in the italian alps. Hydrology, 9(2).

Cressie, N., 1985. Fitting variogram models by weighted least squares. Mathematical Geology 17 (5), 563±586.

D’Ambrosio, D., Di Gregorio, S., Gabriele, S., and Gaudio, R., 2001. A Cellular Automata Model for Soil Erosion by Water. Physics and Chemistry of the Earth - Part B, 26, 33-40.

Di Gregorio, S., and Serra, R., 1999. An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. Future Generation Computer Systems, 16, 259-271.

Di Gregorio, S., Serra, R., and Villani, M., 1999. Applying cellular automata to complex environmental problems: The simulation of the bioremediation of contaminated soil. Theoretical Computer Science, 217, 131-156.

Di Stefano, C., and V. Ferro (1997). “Estimation of evapotranspiration by Hargreaves formula and remote sensed data in semi-arid Mediterranean areas.” J. Agric. Eng. Res., 68, 189–199.

Diskin, M. H., & Nazimov, N. (1996). Ponding time and infiltration capacity variation during steady rainfall. Journal of Hydrology, 178(1–4), 369– 380. https://doi.org/10.1016/0022-1694(95)02798-X

Dodson, R. and Marks, D.. (1997). Daily air temperature interpolated at high spatial resolution over a large mountainous region, Climate Research, 8 (1), 1-20.

Ercolani, G., Gorlé, C., García-Sánchez, C., Corbari, C., Mancini, M. (2015) RAMS and WRF sensitivity to grid spacing in large eddy simulations of the dry convective boundary layer, Computers and Fluids, 123, 54–71.

Famiglietti, J.S., & Wood, E.F. (1994). Multiscale modeling of spatially variable water and energy balanceprocess. Water Resour. Res., 30, 3061–3078, https://doi.org/10.1029/94WR01498.

FAO. (1998). Chapter 1 - Introduction to evapotranspiration. http://www.fao.org/3/X0490E/x0490e04.htm

Farinotti D, Huss M, Bauder A, Funk M, Truffer M. 2009. A method to estimate the ice volume and ice-thickness distribution of alpine glaciers. Journal of Glaciology 55(191): 422-430

Feddes, R.A.; Kabat, P.; Van Bakel, P.J.T.; Bronswijk, J.J.B.; Halbertsma, J. Modeling soil water dynamics in the saturated zone—State of the art. J. Hydrol. 1988, 100, 69–111.

Feki, M., Ravazzani, G., Ceppi, A., Pellicone, G., & Caloiero, T.. (2021). Integration of forest growth component in the fest-wb distributed hydrological model: the bonis catchment case study. Forests, 12(12).

Fiorentini M, Orlandini S. Robust numerical solution of the reservoir routing equation. Adv Water Resour 2013;59:123–32.

Forthofer, J.M., Butler, B.W., Wagenbrenner, N.S. (2014) A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part I. Model formulation and comparison against measurements. Int. J. Wildland Fire, 23, 969-931. doi:10.1071/WF12089.

Gassman, P.W., M. R. Reyes, C. H. Green, J. G. Arnold. 2007. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Transactions of the ASABE. Vol. 50(4): 1211-1250.

Gates DM (1980) Biophysical ecology. Springer, New York, page 101, eq. 6.6

Gaudard, L., Romerio, F., Valle, D. F., Gorret, R., Maran, S., Ravazzani, G., Stoffel, M., & Volonterio, M.. (2014). Climate change impacts on hydropower in the Swiss and Italian Alps. Science of the total environment, 493, 1211–1221.

González-Longatt, F., Medina, H., Serrano González, J. (2015) Spatial interpolation and orographic correction to estimate wind energy resource in Venezuela, Renewable and Sustainable Energy Reviews, 48, 1-16.

Gotway, C.A., 1991. Fitting semivariogram models by weighted least squares. Computers & Geosciences 17 (1), 171±172.

Gowdish, L. and Muñoz-Carpena, R. (2009), An Improved Green–Ampt Infiltration and Redistribution Method for Uneven Multistorm Series. Vadose Zone Journal, 8: 470-479. https://doi.org/10.2136/vzj2008.0049

Green,W.H.; Ampt, G.A. Studies on soil physics I. Flow of air and water through soils. J. Agric. Sci. 1911, 4, 1–24

Haghiabi, A. H., Heidarpourand M. and Habili, J. (2011).A new method for estimating the parameters of Kostiakov and modified Kostiakov infiltration equations.World Applied Sciences Journal. 15(1): 129 –135

Hargreaves G.H., Samani Z.A., 1985. Reference crop evapotranspiration from temperature: Applied Engineering in Agriculture, 1: 96-99.

Hargreaves, G. H. (1994). “Defining and using reference evapotranspiration.” J. Irrig. Drain. Eng., 120(6), 1132–1139.

Hargreaves, G.H., and Z.A. Samani (1982). “Estimating potential evapotranspiration.” J. Irrig. Drain. Eng., ASCE, 108(3), 223-230.

Hartkamp, A.D., K. De Beurs, A. Stein, e J.W. White. Interpolation techniques for climate variables. Mexico, DF (Mexico), CIMMYT, 1999.

Helbig, N., Mott, R., van Herwijnen, A., Winstral, A., Jonas, T. (2017) Parameterizing surface wind speed over complex topography, Journal of Geophysical Research: Atmospheres, J. Geophys. Res. Atmos., 122, 651–667, doi:10.1002/2016JD025593.

Hock R, Jansson P, Braun L N. 2005. Modelling the response of mountain glacier discharge to climate warming. Global Change and Mountain Region. 243-252

Hock R. 2003. Temperature index melt modelling in mountain areas. Journal of Hydrology 282: 104-115.

Hoel, P.G., 1984. Introduction to Mathematical Statistics, 5^(th) ed. John Wiley & Sons, Singapore, 435 pp.

Hoelzle M, Haeberli W, Dischl M, Peschke W. 2003. Secular glacier mass balance derived from cumulative glacier length changes. Global and Planetary Change 36: 295-306

Horritt, M.S., and Bates, P.D., 2001. Predicting floodplain inundation: raster-based modelling versus the finite element approach. Hydrological Processes, 15, 825-842.

Horton P, Schaefli B, Mezghani A, Hingray B, Musy A. 2006. Assessment of climate-change impacts on alpine discharge regimes with climate model uncertainty. Hydrological Processes 20: 2091-2109.

Huggins, L.F.; Monke, E.I. The Mathematical Simulation of the Hydrology of Small Watersheds; Technical Report No. 1; PurdueWater Resources Centre: West Lafayette, Indiana, 1966.

Huss M, Farinotti D, Bauder A, Funk M. 2008. Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrological Processes 22: 3888-3902.

Immerzeel, W. W., Droogers, P., & Gieske, A. S. M. (2006). Remote sensing and evapotranspiration mapping : state of the art. FutureWater. http://ezproxy.utwente.nl:2048/login?url=https://webapps.itc.utwente.nl/library/2006/tech_rep/gieske_rem.pdf

Iovine, G., D’Ambrosio, D., and Di Gregorio, S., 2005. Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterised by strong inertial effects. Geomorphology, 66, 287-303.

Iqbal, M.: An introduction to solar radiation, Academis Press, Canada, Ontario, 1983.

Jacob, C. E., 1950. Flow of groundwater, in H. Rouse Ed. Engineering Hydraulics, Wiley, New York.

Jian, X., Olea, R.A., Yu, Y., 1996. Semivariogram modelling by weighted least squares. Computers & Geosciences 22 (3), 387±397.

Jiménez-Hornero, F.J., Giráldez, J.V., and Laguna, A., 2003. A description of water and sediment flow in the presence of obstacles with a two-dimensional, lattice BGK-cellular automata model. Water Resources Research, 39(12), 1369, doi:10.1029/2003WR002302.

Kale, R.V., Sahoo, B. Green-Ampt Infiltration Models for Varied Field Conditions: A Revisit. Water Resour Manage 25, 3505–3536 (2011). https://doi.org/10.1007/s11269-011-9868-0

Kilzenbach, W., 1986. Groundwater modelling: an introduction with sample programs in BASIC. Developments in Water Science No. 25, Elsevier, Amsterdam, The Netherlands.

Klok E J, Jasper K, Roelofsma P, Gurtz J, Badoux A. 2001. Distributed hydrological modelling of a heavily glaciated Alpine river basin. Hydrological Sciences 46(4): 553-570.

Konz M, Seibert J. 2010. On the value of glacier mass balances for hydrological model calibration. Journal of Hydrology 385: 238-246.

Kostiakov, A. N. (1932). On the dynamics of the coefficient of water-percolation in soils and on the necessity for studying it from a dynamic point of view for purposes of amelioration.Transactions Congress International Society for Soil Science, 6th, Moscow, Part A: 17-21.

Kreith, F., and Kreider, J. F., 1978, Principles of Solar Engineering, New York: McGraw-Hill

Lasdon, L.S., Waren, A.D., Jain, A., and Ratner, M. (1978). “Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming.” ACM Transactions on Mathematical Software, 4(1), 34-50.

Lassabatere, L.; Angulo-Jaramillo, R.; Soria-Ugalde, J.M.; Simunek, J.; Haverkamp, R. Numerical evaluation of a set of analytical infiltration equations. Water Resour. Res. 2009, 45.

Li H, Ng F, Li Z, Qin D, Cheng G. 2012. An extended “perfect plasticity” method for estimating ice thickness along the flow line of mountain glaciers. Journal of Geophysical Research 117: F01020

Liston, G. E. and Elder, K. (2006) A meteorological distribution system for high-resolution terrestrial modeling (MicroMet), J. Hydrometeorol.,7, 217–234.

Liston, G.E., Sturm, M. (1998) A snow-transport model for complex terrain, Journal of Glaciology, 44(148), 498-516.

Liu B.Y.H., Jordan R.C. (1960) The interrelationship and characteristic distribution of direct, diffuse, and total solar radiation. Solar Energy,4 (1), 1–19

Mahring W., 1970. Verdunstungsstudien am neusiedler See. Theor. Appl. Clim., 18: 1-20.

Makkink G.F., 1957. Testing the Penman formula by means of lysimeters. J. Inst. Water Eng., 11: 277-288

Male DH, Granger RJ. 1981. Snow surface energy exchange. Water Resources Research 17(3): 609–627.

Malguzzi, P., Grossi, G., Buzzi, A., Ranzi, R., Buizza, R. (2006) The 1966 “century” flood in Italy: A meteorological and hydrological revisitation. J. Geophys. Res., 111, D24106, doi:10.1029/2006JD007111.

Mancini, M.. (1990). La modellazione distribuita della risposta idrologica: effetti della variabilità spaziale e della scala di rappresentazione del fenomeno dell’assorbimento. PhD thesis. Politecnico di Milano, Istituto di idraulica

Marshall, E., and Randhir, T.O., 2008. Spatial modelling of land cover change and watershed response using Markovian cellular automata and simulation. Water Resources Research, 44, W04423, doi:10.1029/2006WR005514.

Martinec, J. & Rango, A.: Parameter values for snowmelt runoff modelling, J. Hydrol. 84 3/4, 197–219, 1986.

Martinec, J.: The degree-day factor for snowmelt runoff forecasting, proceedings of general assembly of Helsinki commission on surface waters, IAHS Publ. 51, 1960.

Matheron, G., et al. (1965) Les variables régionalisées et leur estimation: Une application de la théorie des fonctions aléatoires aux sciences de la nature. Masson, Paris, 305 pp.

McMahon, T. A., Peel, M. C., Lowe, L., Srikanthan, R., & McVicar, T. R. (2013). Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrology and Earth System Sciences, 17(4), 1331–1363. https://doi.org/10.5194/hess-17-1331-2013

Mein RG, Larson CL (1973) Modeling infiltration during a steady rain. Water Resour Res 9(2):384–394

Mendicino, G., Senatore, A., Spezzano, G., and Straface, S., 2006. Three-dimensional unsaturated flow modeling using cellular automata. Water Resources Research, 42, W11419, doi:10.1029/2005WR004472.

Merdun, H., 2012. Effects of Different Factors on Water Flow and Solute Transport Investigated by Time Domain Reflectometry in Sandy Clay Loam Field Soil.Water, Air and Soil Pollution, 223: 4905. Doi: 10.1007/s11270-012-1246-x

Milly, P. C. D. (1986). An event-based simulation model of moisture and energy fluxes at a bare soil surface. Water Resources Research, 22(12), 1680– 1692. https://doi.org/10.1029/WR022i012p01680

Milly, P. C. D. (1986). An event-based simulation model of moisture and energy fluxes at a bare soil surface. Water Resources Research, 22(12), 1680– 1692. https://doi.org/10.1029/WR022i012p01680.

Milner A M, Brown L E, Hannah D M. 2009. Hydroecological response of river systems to shrinking glaciers. Hydrological Processes 23: 62-77.

Mishra, S.K. , Tyagi,J.V., Singh, V.P., 2003 Comparison of infiltration models Hydrolog. Processes, 17: 2629–2652.

Montaldo, N., Ravazzani, G., & Mancini, M.. (2007). On the prediction of the toce alpine basin floods with distributed hydrologic models. Hydrological processes, 21, 608–621

Monteith, J. L. (1965). “Evaporation and environment”. Symposia of the Society for Experimental Biology. 19: 205–234. PMID 5321565

Moretti, G.; Montanari, A. Inferring the flood frequency distribution for an ungauged basin using a spatially distributed rainfall-runoff model. Hydrol. Earth Syst. Sci. 2008, 12, 1141–1152.

Nelder, J.A., Mead, R., 1965. A simplex method for function minimization. Computer Journal 7, 308±313.

Nye J F. 1952. The mechanics of glaciers flow. Journal of Glaciology 2(12): 82-93

Oke, T.R., Boundary layer climates, Second edition, Routledge, 1987. Appendix A1, eq. A1.2

Pardo-Iguzquiza, E. VARFIT: a fortran-77 program for fitting variogram models by weighted least squares. Computers & Geosciences, 25, 251-261, 1999.

Pari H. and Nofziger, D. (1987). Analytical solution for punctual kriging in one dimension1. Soil Science Society of America Journal - SSSAJ, 51, 01.

Parlange, M.B., J.D. Albertson, W.E. Eichinger, A.T. Cahill and T.J.Jackson, Evaporation: Use of fast response turbulence sensors, raman lidar and passive microwave remote sensing, in Vadose Zone Hydrology: Cutting Across Disciplines, M.B. Parlange and JW Hopmans (eds.), Oxford UniversityPress, 260-278, 1999.

Parsons, J.A., and Fonstad, A., 2007. A cellular automata model of surface water flow, Hydrological Processes, 21, 2189-2195.

Pellicone, G, Caloiero, T, Modica, G, Guagliardi, I. Application of several spatial interpolation techniques to monthly rainfall data in the Calabria region (southern Italy). Int J Climatol. 2018; 38: 3651– 3666. https://doi.org/10.1002/joc.5525

Penman H.L., 1948. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. A, 193: 120-145.

Philip, J.R. Numerical solution of equations of the diffusion type with diffusivity concentration-dependent II. Aust. J. Phys. 1957, 10, 29–42.

Priestley, C. H. B. and Taylor, R. J.: 1972, ‘On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters’, Mon. Wea. Rev. 100, 81–92.

Rabuffetti, D., Ravazzani, G., Corbari, C., & Mancini, M.. (2008). Verification of operational quantitative discharge forecast (QDF) for a regional warning system – the AMPHORE case studies in the upper Po river. Natural hazards and earth system sciences, 8, 161–173.

Ranzi R., Rosso R., Un modello idrologico distribuito, su base fisica, dello scioglimento nivale, Master thesis (in italian), Politecnico di Milano,1989.

Ravazzani, G., Barbero, S., Salandin, A., Senatore, A., & Mancini, M.. (2015). An integrated hydrological model for assessing climate change impacts on water resources of the upper po river basin. Water resources management, 29(4), 1193-1215.

Ravazzani, G., Ceppi, A., & Davolio, S.. (2020). Wind speed interpolation for evapotranspiration assessment in complex topography area. Bulletin of atmospheric science and technology, 1, 13–22.

Ravazzani, G., Corbari, C., Ceppi, A., Feki Mouna, Mancini, M., Ferrari, F., Gianfreda, R., Colombo, R., Ginocchi, M., Meucci, S., De Vecchi, D., Dell’Acqua, F., & Ober, G.. (2017). From (cyber)space to ground: new technologies for smart farming. Hydrology research, 48(3), 656-672.

Ravazzani, G., Corbari, C., Morella, S., Gianoli, P., & Mancini, M.. (2012). Modified Hargreaves-Samani equation for the assessment of reference evapotranspiration in Alpine river basins. Journal of irrigation and drainage engineering, 138(7), 592–599.

Ravazzani, G., Corbari, C., Morella, S., Gianoli, P., and Mancini, M. (2012), Modified Hargreaves-Samani equation for the assessment of reference evapotranspiration in Alpine river basins, Journal of Irrigation and Drainage Engineering, 138, 592- 599.

Ravazzani, G., Ghilardi, M., Mendlik, T., Gobiet, A., Corbari, C., Mancini, M. (2014), Investigation of Climate Change Impact on Water Resources for an Alpine Basin in Northern Italy: Implications for Evapotranspiration Modeling Complexity. PLoS ONE, 9(10): e109053. doi:10.1371/journal.pone.0109053.

Ravazzani, G., Ghilardi, M., Mendlik, T., Gobiet, A., Corbari, C., & Mancini, M.. (2014). Investigation of climate change impact on water resources for an alpine basin in northern Italy: implications for evapotranspiration modeling complexity. Plos one, 9(10), e109053.

Ravazzani, G., Gianoli, P., Meucci, S., & Mancini, M.. (2014). Indirect estimation of design flood in urbanized river basins using a distributed hydrological model. Journal of hydrologic engineering, 19(1), 235–242.

Ravazzani, G., Rametta, D., & Mancini, M.. (2011). Macroscopic cellular automata for groundwater modelling: a first approach. Environmental modelling & software, 26(5), 634–643.

Ravazzani, G., Rametta, D., & Mancini, M.. (2011). Macroscopic cellular automata for groundwater modelling: a first approach. Environmental modelling & software, 26(5), 634–643.

Ravazzani, G.. (2013). Mosaico, a library for raster based hydrological applications. Computers & geosciences, 51, 1–6.

Ravazzani, G.; Mancini, M.; Giudici, I.; Amadio, P. Effects of soil moisture parameterization on a real- time flood forecasting system based on rainfall thresholds. In Quantification and Reduction of Predictive Uncertainty for Sustainable Water Resources Management (Proceedings of Symposium HS2004 at IUGG2007, Perugia, July 2007); IAHS Press: Wallingford, UK, 2007; pp. 407–416

Ravi, V., and Williams, J.R., 1998. Estimation of infiltration rate in the vadose zone: compilation of simple mathematical models, Vol. I. US Environmental Protection Agency, EPA/600/R-97/128a, 26 pp.

Rawls, W.J., Brakensiek, D.L. and Saxton, K.E. 1982. Estimation of soil water properties. Trans. ASAE 25, 1316–1330.

Rawls, W.J., Brakensiek, D.L., and Miller, N. 1983. Green–Ampt infiltration parameters from soils data. J. Hydraul. Eng. 109, 62–70.

Richards, L.A. Capillary conduction of liquids in porous mediums. Physics 1931, 1, 318–333.

Richards, L.A. Capillary conduction of liquids in porous mediums. Physics 1931, 1, 318–333.

Robeson, S.M. (1995) Resampling of network-induced variabil- ity in estimates of terrestrial air temperature change. Clim Change 29:213-229.

Ross, P.J. Modeling soil water and solute transport—Fast simplified numerical solutions. Agron. J. 2003, 95, 1352–1361.

Rotach, M. W., A. Gohm, M. N. Lang, D. Leukauf, I. Stiperski, and J. S. Wagner (2015), On the vertical exchange of heat, mass, and momentum over complex, mountainous terrain, Front. Earth Sci., 3, 76, doi:10.3389/feart.2015.00076.

Ryan, B. C. (1977), A mathematical model for diagnosis and prediction of surface winds in mountainous terrain, J. Appl. Meteorol., 16(6), 571–584.

Salandin, A., Rabuffetti, D., Barbero, S., Cordola, M., Volontè, G. and Mancini, M.: Il lago effimero sul ghiacciaio del Belvedere: monitoraggio e simulazione numerica del fenomeno finalizzata alla previsione e gestione dell’emergenza, Neve e Valanghe 51, 58-65, 2004.

Samani, Z. A., and M. Pessarakli (1986). “Estimating potential crop evapotranspiration with minimum data in Arizona.” Trans. ASAE, 29, 522–524.

Schaefli B, Hingray B, Niggli M, Musy A. 2005. A conceptual glacio-hydrological model for high mountainous catchments. Hydrology and Earth System Sciences 9: 95-109.

Schulte, A., Suthfeld, R., Vogt, B. (2018): E-Learning Project IWRM - Integrated Water Resources Management. Department of Earth Sciences, Freie Universitaet Berlin. https://www.geo.fu-berlin.de/en/v/iwrm/index.html

SCS, Soil Conservation Services. (1985) National Engineering Handbook, Section 4: Hydrology, Soil Conservation Service. USDA, Washington DC.

Sharpley, A.N.; Williams, J.R. EPIC—Erosion/Productivity Impact Calculator. I. Model Documentation; US Department of Agriculture Technical Bulletin; US Department of Agriculture: Washington, DC, USA, 1990.

Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 ACM National Conference. 517–524. doi:10.1145/800186.810616.

Shuttleworth, W. J. (1993). “Evaporation.” in Handbook of hydrology, edited by D. R. Maidment, pp. 4.1-4.53, McGraw-Hill, New York.

Sivapalan, M.; Beven, K.; Wood, E.F. On hydrologic similarity, 2A scaled model of storm runoff production. Water Resour. Res. 1987, 23, 2266–2278.

Smith, R.E.; Parlange, J.Y. A parameter-efficient hydrologic infiltration model. Water Resour. Res. 1978, 14, 533–538. [CrossRef]

Soulis, K.X.; Valiantzas, J.D. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds—The two-CN system approach. Hydrol. Earth Syst. Sci. 2012, 16, 1001–1015.

Swenson, S.C., Clark, M., Fan, Y., Lawrence, D.M., and Perket, J. Representing intrahillslope lateral subsurface flow in the Community Land Model, J. Adv. Model. Earth Sy.,11, 4044–4065, https://doi.org/10.1029/2019MS001833, 2019.

Tarboton D. G., Chowdhury T. G. and Jackson Thomas H.: A Spatially Distributed Energy Balance Snowmelt Model, Utah Water Research Laboratory, 1994.

Theis, C.V., 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Transactions of the American Geophysical Union,16, 519–524.

Thiessen, A.H. (1911) Precipitation averages for large areas. Monthly Weather Review, 39(7), 1082– 1089. https://doi.org/10.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;2

Thornthwaite, C.W.. 1948. An approach toward a rational classification of climate. Geogr. Rev. 38: 55- 94 https://doi.org/10.2307/210739

Tinet, A.-J.; Chanzy, A.; Braud, I.; Crevoisier, D.; Lafolie, F. Development and evaluation of an efficient soil-atmosphere model (FHAVeT) based on the Ross fast solution of the Richards equation for bare soil conditions. Hydrol. Earth Syst. Sci. 2015, 19, 969–980.

Todini, E., 2007. A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach. Hydrol. Earth Syst. Sci. 11, 1645–1659.

Toffoli, T., 1984. Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics, Physica D, 10 (1-2), 117-127.

Von Neumann, J., 1966. Theory of self-reproduction automata, Univ of Ill. Press, Urbana.

Wagenbrenner, N.S., Forthofer, J.M., Lamb, B.K., Shannon, K.S., Butler, B.W., (2016) Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja, Atmos. Chem. Phys., 16, 5229-5241, doi:10.5194/acp-16-5229-2016.

Wales-Smith, B. G. (1980). Estimates of net radiation for evaporation calculations, Hydrological Sciences Journal, 25:3, 237-242, DOI: 10.1080/02626668009491931

Wallinga J, van de Wal S W. 1998. Sensitivity of Rhonegletscher, Switzerland, to climate change: experiments with a one-dimensional flowline model. Journal of Glaciology 44: 383-393.

Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists John Wiley & Sons.

Zhang, Y., Chang, X. & Liang, J. Comparison of different algorithms for calculating the shading effects of topography on solar irradiance in a mountainous area. Environ Earth Sci 76, 295 (2017). https://doi.org/10.1007/s12665-017-6618-5

Zhao, L., Xia, J., Xu, Cy. et al. Evapotranspiration estimation methods in hydrological models. J. Geogr. Sci. 23, 359–369 (2013). https://doi.org/10.1007/s11442-013-1015-9

Zimmerman, D.L., Zimmerman, M.B., 1991. A comparison of spatial semivariogram estimators and corresponding ordinary kriging predictors. Technometrics 33 (1), 77±91.